2^2+6^2=c^2

Simple and best practice solution for 2^2+6^2=c^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2^2+6^2=c^2 equation:



2^2+6^2=c^2
We move all terms to the left:
2^2+6^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+40=0
a = -1; b = 0; c = +40;
Δ = b2-4ac
Δ = 02-4·(-1)·40
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*-1}=\frac{0-4\sqrt{10}}{-2} =-\frac{4\sqrt{10}}{-2} =-\frac{2\sqrt{10}}{-1} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*-1}=\frac{0+4\sqrt{10}}{-2} =\frac{4\sqrt{10}}{-2} =\frac{2\sqrt{10}}{-1} $

See similar equations:

| 18+160t-49t^2=0 | | 2x÷5=4÷7 | | y=(-2)5+3 | | 56=63-d | | (3,-4)m=6 | | 1/3(6x-9)=1/2(8x-4) | | 0.08(y-5)+0.06y=0.04y-0.2 | | 1.8+16t-4.9t^2=0 | | (x+25)=3(x+5) | | 9^2+b^2=41^2 | | 63x-35+35=35 | | -0.1+v/2.2=7.4 | | 1.8+16t+-4.9t^2=0 | | 12x+19x-9+5=-9x+5-9 | | 4(h+1)=4 | | 7÷9n+1÷6=1÷2n-1÷6 | | -2x-1.4=6+35.6 | | 7b+6b=8b-2b | | -63x-35=35=35 | | 4/9x+6=5/9x-2 | | 4x=-3-1 | | 7/9n+1/6=1/2n-1/6 | | x+23=910x+23=910. | | 34=-2(-7n+1)-5n | | -2-13.8x=-8x-6x1 | | 0.2x-0.6-23=1 | | 3x^2=-x+10 | | 1.3(q+3)=5 | | Y=16y+7 | | 571.35=39(x+2.65) | | 4m+15-8m=-9 | | –2(3x+8)–2=10 |

Equations solver categories